

Application of Pneumatic Cylinders

When to Use Pneumatics

- Generally,.... Don't Use Pneumatics if you can avoid it
 - Pneumatics adds an entire new system to robot along with associated complexity and weight

HOWEVER.....

- Pneumatics can be best solution for some design challenges
 - Application of a force over a limited range of motion
 - * High force in a small package
 - Very forgiving, unlike electric motors, it will not burn out if it doesn't move

2018 Game & Season Manual

- **Read thew FIRST technical manual carefully...**
 - * There are many rules / limitations for pneumatic systems
- Max working pressure is 60 Psi
- Max Tank storage pressure is 120 Psi
- 🕸 Don't:
 - Modify pneumatic compressors, valves, tanks, or cylinders
 - * Safety Concern
 - Robot will not pass inspection of these components have been modified
 - * Apply sideways force to cylinder shaft
 - * Cylinder will not work if shaft is bent !!!

- **4** Factors to consider:
 - * Retracted Length
 - * Extended Length
 - Stroke 🕸
 - Mounting configuration and hardware on shaft and base of cylinder

Single action cylinder with single port

- * Extension driven by applied pressure
- Retraction by mechanical spring force and/or compression of air trapped on opposite side of piston

Single Action Cylinder Shown in Non-Actuated Full Retracted Position

Single Action Cylinder: Operation Same Pressure on Both Sides of Cylinder at Full Retract Retract Force from Spring Only **Full Retract** O Position Port Open to Atmosphere Pressure higher than Atmosphere due to compression with reduced volume **Full Extend** Ο **Extension Force** Position Port and Working Side of Piston Extension Force = Differential Pressure across Piston x at System Pressure Piston Area – Compressed spring force

Bouble action cylinder with dual ports

- * 2-Port design with separate ports on each side of piston
- * Retraction/Extension controlled by applying pressure to either front or back ports

Double Action Cylinder Shown in Non-Actuated Full Retracted Position

Double Action Dual Port Cylinder: Operation

Force Calculations

 Extend/Retract Force is determined by system air pressure and area of piston

Force:

- * Force (Lbf) = Pressure (Psi) x π x Area (In²) / 4
- Plot at right shows force at 60 Psi for range of cylinder diameters

Force at 60 Psi for different size cylinders

Basign system using positive end stops within the mechanism

- * Don't rely on stops internal to cylinder itself to limit travel
 - * Reliance on internal stops eventually damages cylinder itself
- Not possible to achieve intermediate positions of cylinder for locations between Min/Max extension with a single cylinder configuration

Avoid design configuration that can apply side loads to extended shaft

- * The slightest bend can render cylinder inoperative and bends are difficult to repair
- Stroke can be slowed with an adjustable orifice to reduce severity of impact when cylinder reaches end of stroke
 - Mechanism reaching limit stops with immediate application of full pressure can apply excessive impacts that can damage components of mechanism itself

Things to Consider..... (Continued)

Is an on-board air compressor needed?

- Eliminating a compressor saves weight and packaging space
- * Need to pressurize system prior to every match with an off-board compressor
- * It is essential that pneumatic system is air tight and does not have small leaks
 - * Can loose significant on-board air if long delay occurs before match starts
- Comparison of total air needed for a match vs On-X₿K board capacity will determine if an on-board compressor is needed
 - Calculate air mass at 60 Psi by estimating number of cycles needed per cylinder for a match combined with working volume of each S\$R _ cylinder
 - * Use $P_1V_1 = P_2V_2$ formula to calculate air needed per cylinder actuation

Calculate Number of Actuations 1 Clippard tank can provide before Tank Pressure Falls below 60 Psi

- Clippard tank volume = 35 In³
- * ³/₄" Dia Cylinder with 5" Stroke volume = 2.65 In³ per Stroke
- * Storage Pressure: 120 Psi
- * Working Pressure: 60 Psi
- * Starting PV @ 120 Psi = 4200 Pound-Inch
- Inding Tank PV @ 60 Psi = 2100 Pound Inch
- * PV per Cylinder Actuation = 60 Psi x 2.65 In3 = 159 Pound-Inch
- ✤ Available Tank Pv = 4200 2100 = 2100 Pound-Inch
- Number of Actuations keeping 60 Psi Tank Pressure = 2100 / 159 = 13.2
- * 13 Cylinder cycles keeping tank pressure above 60 Psi

***** Is Air pressure required at start of autonomous period?

- * Make sure system is fully charged before putting robot on the field
- And/or include a delay in Autonomous period program for compressor to build system pressure before using pneumatic controlled features

What happens at end of match?

- * Example: Climb mechanism requires pneumatic pressure to maintain position after end of match when controls are disabled
 - Must ensure desired pneumatic function is maintained after power down by use of proper power off open close valve states

***** Leave adequate space for fittings and pneumatic lines

* Position of lines and fittings can change between extended and retracted positions

McMaster Carr is best supplier of Air Cylinders

* https://www.mcmaster.com/air-cylinders/

	0	
	~	CONTACT US ORDER
	5,843 Products	How can we improve?
System of Measurement Inch Metric	About Air Cylinders More	
Stroke Length	Air Cylinders	
	Double-Acting Round Body Air Cylinders	Single-Acting Round Body Air Cylinders
0"-1"	Create linear motion with the most popular of our air cylinders.	More basic and cost effective than double-acting cylinders, these single-acting cylinders exert force in one direction and have a spring to return the rod to its original position.
1/8"	Sensor-Ready Round Body Air Cylinders	Cushioned Round Body Air Cylinders
1/4"	The magnetic piston inside these	Designed to keep the piston from
5/16"	cylinders can activate relays and controllers when used with a sensor	slamming against the cylinder body, these cylinders have adjustable air
3/8"		cushions at each end to minimize wear
7/16"		and noise.

McMASTER-CARR.

Example: Double Acting Cylinders Select ³/₄" 6" Stroke

Double-Acting Round Body Air Cylinders

Universal Mount

Lg					Air Inlet			7	5
			Force @		Pipe	Thread			
Stroke	Retracted	Extended	100 psi, lbs.	Body Material	Size	Туре	Gender		Each
12"	15.44"	27.44"	31	304 Stainless Steel	10-32	UNF	Female	6498K442	69.51
3/4" Bore S	ize (0.86" OD)								
1/2"	5.03"	5.53"	40	304 Stainless Steel	1/8	NPT	Female	6498K631	30.81
1"	5.53"	6.53"	40	304 Stainless Steel	1/8	NPT	Female	6498K632	31.98
1 1/2"	6.03"	7.53"	40	304 Stainless Steel	1/8	NPT	Female	6498K633	33.15
2"	6.53"	8.53"	40	304 Stainless Steel	1/8	NPT	Female	6498K634	34.27
2 1/2"	7.03"	9.53"	40	304 Stainless Steel	1/8	NPT	Female	6498K443	35.45
3"	7.53"	10.53"	40	304 Stainless Steel	1/8	NPT	Female	6498K635	36.62
4"	8.53"	12.53"	40	304 Stainless Steel	1/8	NPT	Female	6498K636	38.91
5"	9.53"	14.53"	40	304 Stainless Steel	1/8	NPT	Female	6498K637	41.20
6"	10.53"	16.53"	40	304 Stainless Steel	1/8	NPT	Female	6498K638	43.55
7"	11.53"	18.53"	40	304 Stainless Steel	1/8	NPT	Female	6498K861	45.84
8"	12.53"	20.53"	40	304 Stainless Steel	1/8	NPT	Female	6498K639	48.19
9"	13.53"	22.53"	40	304 Stainless Steel	1/8	NPT	Female	6498K403	50.48
10"	14.53"	24.53"	40	304 Stainless Steel	1/8	NPT	Female	6498K641	52.77
12"	16.53"	28.53"	40	304 Stainless Steel	1/8	NPT	Female	6498K642	57.41
14"	18.53"	32.53"	40	304 Stainless Steel	1/8	NPT	Female	6498K404	66.31
16"	20.53"	36.53"	40	304 Stainless Steel	1/8	NPT	Female	6498K405	70.95
18"	22.53"	40.53"	40	304 Stainless Steel	1/8	NPT	Female	6498K444	75.58
24"	28.53"	52.53"	40	304 Stainless Steel	1/8	NPT	Female	6498K406	89.44

Double Acting

Most of our cylinders are double acting, so they have air-extend and air-retract actuation; they use air to exert force in both directions to push and pull. Cylinders have two ports.

Air extends the rod.

Single Acting

Single-acting cylinders use air to exert force in one direction and have a spring that returns the rod to its original position. They have one port. Choose from air-extend cylinders that use air to push and air-retract cylinders that use air to pull.

Air-Extend Cylinders (Push Style)

A spring extends the rod.

Air-Retract Cylinders (Pull Style)

Make sure correct type cylinder is ordered.

Very easy to select the wrong one

Cylinders smaller than $\frac{3}{4}$ " use 10/32 UNF Pipe thread which is not the standard 1/8" MPT

Example: Double Acting Cylinders Select ³/₄" 6" Stroke

Selection and Packaging of Pneumatic Cylinders

Stroke, Required Force, Single/Dual action, XXX need for spring return/extend are primary factors in selecting the correct cylinder

Example: 88

- * Need cylinder to actuate arm to intake game piece from floor level
- Arm must start within frame perimeter and open wide X K enough to accept game piece
- Full extension is limited by mechanical stop before S\$\$KS cylinder reaches stroke limit
- XXX Full extension should be less than 90° from frame to allow arm to force cylinder to stroke inward to absorb impact energy
- Use single acting cylinder with spring extend 8

Frame

Wheel

Select 5" Stroke ¾" Bore Cylinder and determine retract/extend lengths with clevis attached

Determine Anchor Point for Cylinder

- Best to locate pivot point aligned with frame rail to minimize needed structure
- Place 10.16" (Retracted Length) radius arc about crank arm starting position pivot
- Place 15.16" (Extended Length) radius arc with center along 10.16 Arc within frame rail position with radius exceeding crank arm at open position
- Satisfactory match if extended cylinder radius exceeds crank arm pivot at Max open arm position
 - * 5" Cylinder meets Criteria

