ADAMBOTS Team 245

Application of Gearing

Why do we need Gears??

- Provide speed reduction
 - Motors deliver needed power at speeds much higher than speed where the power can be applied
- Change axis of rotation
 - ➔ Motors often cannot fit in the location where the rotation needs to be applied and gears are used to translate the axis of rotation
 - Can shift to another parallel axis or can change axis by 90°

Planetary Gears

Speed Reduction

Speed Reduction is Driven by Diameter Ratio or by Ratio of Number of Teeth

Speed Reduction

Speed Reduction Can Be Achieved Using a Belt or Chain Drive In Combination with Sprockets

Large Offset of Axis Same Rotation Direction of Axle

Speed Reduction

Combination of Planetary Gear Stages Allows Higher Gear Ratio along the same axis

3 Stages gives 39:1 Ratio along the Same Axis

Example: Apply Maximum Power at the Drive Wheels

- Want to apply maximum power to drive wheels at forward speed of 4 Feet/Second
- What gear ratio would be needed to match 4 Feet/Second with the Maximum power point of the motor for 12V operation?
- Break this problem into small steps to gain full understanding of the process

Find Wheel Speed for 4 Feet/Second Forward Speed

- Start with wheel diameter of 8"
 - \rightarrow Circumference is π x Diameter
 - → 3.14159 x 8 = 25.13 Inches
 - 1 Revolution covers 25.13 Inches or 2.09 Feet
 - 4 Feet requires: 4 / 2.09 = 1.91 Rev's
 - 1.91 Revolutions needed in 1 Second
 - Transfer to RPM by x 60
 - 1.91 x 60 = 114.8 Rev/Min or RPM
 - Need to provide Max power at 114.8 RPM at the wheels

What is Max Power Point of the Motor

Maximum Power Point of Motor at 12V

What Gear Ratio is Needed to Match Max Power at 4 Ft/Sec Forward Speed?

Find Gear Ratio

- → Motor speed at Max Power is 2655 RPM
- → Wheel speed at 4 Ft/Sec = 114.8 RPM
- Need 2655/114 Reduction ratio = 23.2:1 to match motor operating at Max power point at 4 Ft/Sec
- Torque available at the wheel at 114.8 RPM found by multiplying by the gear reduction ratio
 - → 171 Oz-In at motor x 23.2 = 3962 Oz In
 - ➔ Assuming no power losses in the gear transmission

Robot Climbing Example

Need to lift a 150 Pound robot 24 Inches in 3 Seconds

Use a cable wrapped around a 2" Diameter pulley

Pulley is long enough to hold 24" of cable along outer edge without overlapping

Robot Climbing Example

- How fast does pulley need to turn to pull 24" in 3 Seconds?
 - 3.82 Revolutions needed for 24"
 - → 24" or 3.82 Revolutions needed in 3 Seconds
 - → 3.82 Rev in 3 Seconds = 1.27 Rev/Sec or 76.4 RPM

Robot Climbing Example

How much Power is needed to lift 150 Pounds 24" in 3 Seconds??

→ 2400 Oz-Inches at 76.4 RPM gives 136 Watts

Where is 136 Watt Operating Point @12V?

Gear Ratio Calculation:

What is Needed Gear Ratio to Match Power?

- Need 76.4 RPM at Pulley and 136 Watts
- 136 Watts output on motor at 12 Volts needs 4710 RPM
- \rightarrow Need speed reduction of 4710 / 76.4 RPM = 61.6
- Need 62:1 gear ratio to match

Application to Robot

Limitations for Application

- Voltage to motor will not be 12V
 - ➔ Battery voltage may be dropping at end of match
 - Will loose Voltage through wire resistance at high current draw operation
- Need to keep within maximum 40 Amp current limit per circuit on the robot
- These limitations impact application of motor to the robot
 - Do calculations assuming we have 10 Volts at the motor

Repeat Climbing Example: 150 Pound Robot 2 24" Climb

- Determine climbing speed keeping within 40
 Amp Limit and 10V at motor
- Start with 10V Motor Curve

Motors Training 2016

Repeat: Robot Climbing Example

Need to lift a 150 Pound robot

- Use a cable wrapped around a 2" Diameter pulley
- → Need 2400 Oz-In Torque

Use Needed Torque to Choose Speed Ratio

Need 2400 Oz-In Torque to lift Robot

- → 40 Amp Torque limit for the motor is 98 Oz-Inches
- Need 2400 Oz-In Torque
- Assume 90% Power Transfer efficiency
 - → 98 Oz-In Torque at Motor is reduced to 88 Oz-In
- Calculate speed ratio based on Torque ratio:
 - → 2400 / 88 = 27.3
 - Need 27.3:1 Ratio or Higher to climb robot keeping within the 40 Amp per motor limitation
- → Speed at pulley is 2904 / 27.3 = 106 RPM

X X

Robot Climbing Example

How fast will pulley wrap 24" of cable?

- 3.82 Revolutions needed for 24"
- Pulley speed is 106.3 RPM
- 106.3 RPM is 1.77 Rev/Sec
- 3.82 Rev / 1.77 Rev/Sec = 2.15 Seconds

Importance of Proper Speed Ratio Sizing

- Previous Example identified a 27.3:1 Speed Ratio
 - This matched climbing the robot at the 40 Amp limit of the motor circuit
 - Ratio lower than 27.3:1 will require more than 40 Amps
 - Ratio higher than 27.3:1 will climb faster and will use less current
- What would be motor operating point if a 40:1 Speed ratio was used:

Revisit Climbing with a 40:1 Speed Ratio

Use 40:1 Speed ratio

- 2400 Oz-In needed torque at spool is reduced to 60 Oz at the motor with 40:1 ratio
- Apply 90% Power transfer efficiency increases torque to 66.7 Oz-In
- → Find 66.7 Oz-In point on 10V motor curve
- → Find current at 66.7 Oz-In
- Find speed at 66.7 Oz-In and determine speed for pulley
- Then determine how many seconds is needed to turn pulley 3.82 Revolutions

Find Motor Operation at 66.7 Oz-In

Find Climbing Speed Based on 3393 Motor Speed

Use 40:1 Speed ratio

- 3393 RPM at motor is 3393 / 40 = 84.8 RPM at the Pulley
- Need 3.82 Revolutions
- → 84.8 RPM is 84.8 / 60 = 1.41 Rev/Sec
- → 3.82 Revolutions will take 3.82 / 1.41 = 2.70 Sec
- → Will require 28 Amps

Comparison:

- → 40:1 Ratio = 28 Amps and 2.70 Seconds
- \rightarrow 27:1 Ratio = 40 Amps and 2.15 Seconds
- Lower than 27:1 will not climb due to 40 Amp limit