COR ADAMEOTS

 Team 245

 Team 245}

Application of Gearing

Gears

Why do we need Gears??

Provide speed reduction
\rightarrow Motors deliver needed power at speeds much higher than speed where the power can be applied
\Rightarrow Change axis of rotation
\rightarrow Motors often cannot fit in the location where the rotation needs to be applied and gears are used to translate the axis of rotation
\rightarrow Can shift to another parallel axis or can change axis by 90°

Speed Reduction

Speed Reduction is Driven by Diameter Ratio or by Ratio of Number of Teeth

Speed Reduction

Speed Reduction Can Be Achieved Using a Belt or Chain Drive In Combination with Sprockets

Speed Reduction

\& Combination of Planetary Gear Stages Allows Higher Gear Ratio along the same axis

Example: Apply Maximum Power at the Drive Wheels

* Want to apply maximum power to drive wheels at forward speed of 4 Feet/Second
* What gear ratio would be needed to match 4 Feet/Second with the Maximum power point of the motor for 12 V operation?
* Break this problem into small steps to gain full understanding of the process

Find Wheel Speed for 4 Feet/Second Forward Speed

* Start with wheel diameter of 8 "

\Rightarrow Circumference is $\pi \times$ Diameter
$\rightarrow 3.14159 \times 8=25.13$ Inches
$\Rightarrow 1$ Revolution covers 25.13 Inches or 2.09 Feet
$\Rightarrow 4$ Feet requires: 4 / $2.09=1.91$ Rev's
\Rightarrow 1.91 Revolutions needed in 1 Second
\Rightarrow Transfer to RPM by x 60
$\rightarrow 1.91 \times 60=114.8 \mathrm{Rev} / \mathrm{Min}$ or RPM
\Rightarrow Need to provide Max power at 114.8 RPM at the wheels

What is Max Power Point of the Motor

Max Power is 335 Watts
CIM Motor 12.0 Volt Performance

\& Maximum Power Point of Motor at 12V

Motors Training 2016

What Gear Ratio is Needed to Match Max

 Power at $4 \mathrm{Ft} / \mathrm{Sec}$ Forward Speed?
Find Gear Ratio

Motor speed at Max Power is 2655 RPM
Wheel speed at $4 \mathrm{Ft} / \mathrm{Sec}=114.8 \mathrm{RPM}$
Need 2655/114 Reduction ratio $=23.2: 1$ to match motor operating at Max power point at $4 \mathrm{Ft} / \mathrm{Sec}$
Torque available at the wheel at 114.8 RPM found by multiplying by the gear reduction ratio
$\rightarrow 171 \mathrm{Oz}$-In at motor $\times 23.2=3962 \mathrm{Oz}$ In
\rightarrow Assuming no power losses in the gear transmission

Robot Climbing Example

Need to lift a 150 Pound robot 24 Inches in 3 Seconds

\rightarrow Use a cable wrapped around a 2" Diameter pulley Pulley is long enough to hold 24 " of cable along outer edge without overlapping

Robot Climbing Example

* How fast does pulley need to turn to pull 24" in 3 Seconds?
\Rightarrow 3.82 Revolutions needed for 24 "
$\Rightarrow 24$ " or 3.82 Revolutions needed in 3 Seconds
\Rightarrow 3.82 Rev in 3 Seconds $=1.27 \mathrm{Rev} / \mathrm{Sec}$ or 76.4 RPM

150 Lb

> 76.4 RPM Needed

Robot Climbing Example

How much Power is needed to lift 150 Pounds 24" in 3 Seconds??

\Rightarrow 2400 Oz-Inches at 76.4 RPM gives 136 Watts

Where is 136 Watt Operating Point @12V?

CIM Motor 12.0 Volt Performance

Gear Ratio Calculation:

What is Needed Gear Ratio to Match Power?

Need 76.4 RPM at Pulley and 136 Watts
$\Rightarrow 136$ Watts output on motor at 12 Volts needs 4710 RPM
\Rightarrow Need speed reduction of $4710 / 76.4$ RPM $=61.6$ Need 62:1 gear ratio to match

Application to Robot

Limitations for Application

Voltage to motor will not be 12 V
\rightarrow Battery voltage may be dropping at end of match
\rightarrow Will loose Voltage through wire resistance at high current draw operation
\Rightarrow Need to keep within maximum 40 Amp current limit per circuit on the robot
\rightarrow These limitations impact application of motor to the robot

Do calculations assuming we have 10 Volts at the motor

Repeat Climbing Example: 150 Pound Robot 24" Climb

* Determine climbing speed keeping within 40 Amp Limit and 10 V at motor
* Start with 10V Motor Curve

CIM Motor 10.0 Volt Performance

Repeat: Robot Climbing Example

Need to lift a 150 Pound robot

Use a cable wrapped around a 2" Diameter pulley
Need 2400 Oz-In Torque

Use Needed Torque to Choose Speed Ratio

Need 2400 Oz-In Torque to lift Robot

40 Amp Torque limit for the motor is 98 Oz -Inches
Need 2400 Oz-In Torque
Assume 90\% Power Transfer efficiency
$\rightarrow 98 \mathrm{Oz}-\mathrm{In}$ Torque at Motor is reduced to 88 Oz -In
\Rightarrow Calculate speed ratio based on Torque ratio:
$\rightarrow 2400 / 88=27.3$
\rightarrow Need 27.3:1 Ratio or Higher to climb robot keeping within the 40 Amp per motor limitation
\Rightarrow Speed at pulley is $2904 / 27.3=106$ RPM

Robot Climbing Example

* How fast will pulley wrap 24" of cable?
\Rightarrow 3.82 Revolutions needed for 24 "
\Rightarrow Pulley speed is 106.3 RPM
\Rightarrow 106.3 RPM is 1.77 Rev/Sec
\Rightarrow 3.82 Rev / 1.77 Rev/Sec = 2.15 Seconds

Importance of Proper Speed Ratio Sizing

Previous Example identified a 27.3:1 Speed Ratio
\Rightarrow This matched climbing the robot at the 40 Amp limit of the motor circuit
\Rightarrow Ratio lower than 27.3:1 will require more than 40 Amps
\Rightarrow Ratio higher than 27.3:1 will climb faster and will use less current

* What would be motor operating point if a 40:1 Speed ratio was used:

Revisit Climbing with a 40:1 Speed Ratio

Use 40:1 Speed ratio
$2400 \mathrm{Oz}-\mathrm{In}$ needed torque at spool is reduced to 60 Oz at the motor with 40:1 ratio
\Rightarrow Apply 90% Power transfer efficiency increases torque to $66.7 \mathrm{Oz}-\mathrm{In}$
\Rightarrow Find 66.7 Oz -In point on 10 V motor curve Find current at $66.7 \mathrm{Oz}-\mathrm{In}$
\Rightarrow Find speed at 66.7 Oz-In and determine speed for pulley
\Rightarrow Then determine how many seconds is needed to turn pulley 3.82 Revolutions

Find Motor Operation at 66.7 Oz-In

CIM Motor 10.0 Volt Performance

Find Climbing Speed Based on 3393 Motor Speed

Use 40:1 Speed ratio

$\Rightarrow 3393$ RPM at motor is $3393 / 40=84.8$ RPM at the Pulley
\Rightarrow Need 3.82 Revolutions
$\Rightarrow 84.8 \mathrm{RPM}$ is $84.8 / 60=1.41 \mathrm{Rev} / \mathrm{Sec}$
$\Rightarrow 3.82$ Revolutions will take $3.82 / 1.41=2.70 \mathrm{Sec}$
\Rightarrow Will require 28 Amps

* Comparison:
\Rightarrow 40:1 Ratio $=28$ Amps and 2.70 Seconds
$\Rightarrow 27: 1$ Ratio $=40$ Amps and 2.15 Seconds
\Rightarrow Lower than 27:1 will not climb due to 40 Amp limit

